翻訳と辞書
Words near each other
・ Bondokoro-Dioula
・ Bondokoro-Dogosse
・ Bondokuy
・ Bondokuy Department
・ Bondola
・ Bondone
・ Bondonella
・ Bondorabad, Yazd
・ Bondara
・ Bondaran
・ Bondarcevomyces
・ Bondarchuk
・ Bondarenko
・ Bondarenko (crater)
・ Bondarev
Bondareva–Shapley theorem
・ Bondari
・ Bondari, Tambov Oblast
・ Bondaroy
・ Bondarreh, Dana
・ Bondarsky District
・ Bondart
・ Bondaruz
・ Bondary
・ Bondarzewia
・ Bondarzewiaceae
・ Bondax
・ Bonde
・ Bonde da Stronda
・ Bonde das Maravilhas


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bondareva–Shapley theorem : ウィキペディア英語版
Bondareva–Shapley theorem
The Bondareva–Shapley theorem, in game theory, describes a necessary and sufficient condition for the non-emptiness of the core of a cooperative game. Specifically, the game's core is non-empty if and only if the game is ''balanced''. The Bondareva–Shapley theorem implies that market games and convex games have non-empty cores. The theorem was formulated independently by Olga Bondareva and Lloyd Shapley in the 1960s.
== Theorem ==
Let the pair \; \langle N, v\rangle \; be a cooperative game, where \; \; N \; is the set of players and where the ''value function'' \; v: 2^N \to \mathbb \; is defined on N's power set (the set of all subsets of N).
The core of \; \langle N, v \rangle \; is non-empty if and only if for every function \alpha : 2^N \setminus \ \to () where
\forall i \in N : \sum_ \alpha (S) = 1
the following condition holds:
:\sum_{S \in 2^N\setminus\{\emptyset\}} \alpha (S) v (S) \leq v (N).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bondareva–Shapley theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.